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Abstract

We consider the problem of maximizing underwater acoustic data transmission by
adaptively positioning an autonomous mobile relay so as to learn and exploit spatial
variations in channel performance. The acoustic channel is the main practical method
of underwater wireless communication and improving channel throughput and reli-
ability is key to improving the capabilities of underwater vehicles. Predicting the
performance of the acoustic channel in the shallow-water environment is challenging
and usually requires extensive modeling of the environment. However, a mobile relay
can learn about the unknown channel as it transmits. The relay must balance search-
ing unknown sites to gain more information, which may pay off in the future, and
exploiting already-visited sites for immediate reward. This is a classic exploration vs.
exploitation problem that is well-described by a multi-armed bandit formulation with
an elegant solution in the form of Gittins indices. For an autonomous ocean vehicle
traveling between distant waypoints, however, switching costs are significant. The
multi-armed bandit with switching costs has no optimal index policy, so we have de-
veloped an adaptation of the Gittins index rule with limited policy enumeration and
asymptotic performance bounds. We describe extensive shallow-water field experi-
ments conducted in the Charles River (Boston, MA) with autonomous surface vehicles
and acoustic modems, and use the field data to assess performance of the MAB deci-
sion policies and comparable heuristics. We find the switching-costs-aware algorithm
offers superior real-time performance in decision-making and efficient learning of the
unknown field.

Thesis Supervisor: Franz S. Hover
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Chapter 1

Introduction

The ocean is a challenging environment for humans and robots alike. Features of

interest may vary over wide temporal and spatial scales, the environment is often un-

known and harsh as pressures and temperatures reach extremes, and familiar robotic

senses like sight and touch degrade underwater. Large advances in marine robotics

and autonomy have been made in recent years as scientists and engineers have risen to

the challenge, motivated by the immense potential for robotics to further study of the

ocean and usage of its resources. As individual vehicles, their navigation, control and

communications, mature into commercially-available technology, the next step lies in

enhancing the control and behavior of fleets of vehicles, so that they may organize

and collaborate in a way that enhances the capabilities of the group as a whole.

Effective underwater communication is vital to the development of multi-vehicle

applications in the ocean, and the main mode of wireless data transmission underwater

is acoustic. Electromagnetic waves are severely attenuated underwater, rendering ra-

dio frequency (RF) communications inappropriate and optical communications short

range (on the order of a hundred meters). However, the acoustic channel is noto-

riously unreliable and highly dependent on the properties of the medium. Modern

channel modeling, estimation and coding schemes go a long way towards improving

channel performance (e.g. [46], [16], [40]), but cannot directly address the channel’s

dependence on spatially variable environmental properties — temperature, salinity,

bathymetry, surface conditions etc., and the physical location of the acoustic nodes.

17



This thesis considers the problem of maximizing the performance of the acoustic

channel in an unknown environment by deploying a mobile, autonomous acoustic

relay that adaptively positions itself so as to exploit horizontal spatial variability in

the channel. As the relay learns about the channel’s properties by transmitting, this

can be posed as a classic exploration vs. exploitation scenario with an elegant and

practical solution.

1.1 Background and Motivation

We briefly review common marine robotic platforms and applications, and the atten-

dant technical challenges.

1.1.1 Marine Vehicles: Applications and Autonomy

Robotic ocean vehicles are primarily utilized by three general industries; oil and gas,

defense and security, and scientific research (Fig. 1-1). In 2010, the oil industry rep-

resented 50% of global ROV sales and 20% of global AUV sales [11]. Development of

vehicles capable of survey and inspection as well as equipment installation, manip-

ulation and repair tasks has been motivated by dwindling shallow-water oil reserves

and the move towards technically-challenging deep water wells [50]. In the security

industry, robotic vehicles are well-suited to time-consuming tasks or dangerous tasks

such as patrolling, reconnaissance, ship-hull inspections and mine counter-measures

(MCM) (e.g. [4], [20]). Vehicles equipped with various sensors and able to commu-

nicate with static sensor networks are often used to collect oceanographic data on a

large scale and in harsh environments. Increased availability of salinity, temperature,

density, chemical and biological composition data help researchers better understand

and model ocean processes [30]. Imaging, sonar or vision-based, allows vehicles to

capture evidence of new marine species as well as uncover underwater archaeological

sites [21].

Remotely-operated vehicles (ROVs) are designed for remote human control and

use with a support vessel or platform. Power and commands are transmitted from

18



(a) Saab ROV Falcon (b) MIT Bluefin HAUV (c) Hydroid REMUS

Figure 1-1: Saab Seaeye’s ROV Falcon controls a robotic shark to gently bite an
actor; The Bluefin HAUV builds a point cloud mesh model of a ship hull to inspect
for mines; Hydroid’s AUV REMUS tracks a great white shark for Discovery Chan-
nel’s Shark Week. Image Sources: (a) http://www.rovworld.com/article2886.

html, (b) http://web.mit.edu/hovergroup, (c) http://www.whoi.edu/oceanus/

viewArticle.do?id=173392

the support vessel to the vehicle through a long tether, while sensor data such as

real-time video is transmitted back. Tethered ROVs operate underwater without the

constraints of battery life and computing capacity but the presence of the long tether

complicates vehicle dynamics and increases operating costs and complexity. High

bandwidth data transmission through the tether enables real-time imaging, manip-

ulation and pilot control, thus ROVs are generally used to replace divers for deep

water equipment construction and repair tasks [51]. Commercial ROVs range from

large, versatile work-class vehicles like Soil Machine Dynamics (SMD) QUANTUM

and ATOM, to the specialized man-portable inspection and survey ROV VideoRay

(Fig. 1-2). In general, ROVs offer real-time sensing, power and fine pilot control

underwater while being relatively time, manpower and capital-intensive to operate.

However, as underwater vehicle technology matures and the price of vehicles de-

creases, human and ship support dominate as the major cost driver of underwater

ocean operations. Autonomous underwater vehicles (AUVs) are able to operate in-

dependently of a support ship or platform for long periods of time (Fig.1-3). They

have varying levels of autonomy, ranging from pre-planned lawnmower-style paths

for survey and data collection to adaptive behaviors that respond to environmental

stimulus. AUVs must handle their own low-level control and navigation, mission-

level decision-making and operate sensor payloads for oceanographic data collection,

19
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(a) SMD ATOM (b) VideoRay (c) WHOI Nereus

Figure 1-2: Work-class ROVs like SMD’s ATOM are often used for construc-
tion and maintenance; ROV VideoRay is a small specialized robot for inspec-
tion and survey; WHOI’s Hybrid Oceanographic Research ROV Nereus is able
to operate in different modes. Image Sources: (a) http://www.smd.co.uk/

products/work-class-rovs/atom.htm, (b) http://www.videoray.com/homepage/
professional-rovs/videoray-pro-4.html, (c) https://www.whoi.edu/main/

nereus

optical and sonar-based imaging. Currently, the majority of AUVs sold are rated for

water depths less than two hundred meters, with the emphasis on small, light vehicles

[11]. Their operational capability is limited by onboard computing power, battery life

and means of actuation. Gliders are one type of AUV that move by adjusting the

vehicle’s buoyancy. Using fixed wings, they are able to travel in a vertical yo-yo pat-

tern with very little power consumption. Hybrid AUVs such as the Bluefin HAUV

and WHOI’s Nereus are able to move autonomously underwater, but communicate

with the support vessel through a thin, high-bandwidth fiber-optic cable.

1.1.2 Underwater Acoustic Communication

Wireless communication with underwater autonomous vehicles is key to increasing

their ability and reliability, and the acoustic channel is the main practical carrier for

wireless underwater data transmission over long distances. Radio frequency waves

are heavily attenuated underwater (on the order of tens of meters), and high band-

width optical communications is limited to short ranges (about one hundred meters

in clear water). The acoustic channel is a wide-band packet-based erasure channel.

Latency is high as the speed of sound in water is approximately 1500m/s and data
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(a) Hydroid REMUS (b) OceanServer Iver2 (c) MIT Bluefin HAUV

Figure 1-3: Hydroid’s REMUS is well-suited to methodical surveying and map-
ping, OceanServer’s Iver2 is a low-cost, single man-portable system, and the
Bluefin HAUV was designed for hull inspection with a high-resolution imaging
sonar. Image Sources: (a) http://www.whoi.edu/instruments/viewInstrument.

do?id=1759, (b) http://iver-auv.com, (c) http://www.bluefinrobotics.com/

products/hauv/

rates are low. The channel is wide-band, in the sense that the bandwidth is not neg-

ligible with respect to the center frequency, and cannot accommodate multiple users

or signal multiplexing easily. Numerous sources of signal interference make packet

decoding a challenge, for example, Doppler effects from source and receiver motion,

wave refraction due to the nonlinear sound-speed profile, and reflection and scattering

from the surface, bottom and particles within the volume creating numerous multi-

path arrivals (Fig. 1-4). These sources may vary widely in time and space and are

heavily dependent on local environmental properties including density, temperature,

salinity of the water as well as bathymetry and surface conditions. In harbor and

man-made environments, structures and ambient noise can be a problem. Given suf-

ficient knowledge of the environment, ray and beam-tracing may be used to predict

the effects of multipath as well as the location of “shadow-zones” and acoustic wave

guides in which refraction of sound waves create zones where acoustic waves do not

enter or exit respectively ([38],[10]). These methods are generally conducted in the

two-dimensional vertical plane where the sound-speed profile is well-defined.

The signal’s attenuation and spreading loss is frequency-dependent, as delay oc-

curs over many milliseconds due to the low speed of sound in water. Background

ambient noise from sources like wind, waves and shipping may be approximated

as Gaussian but not white, while site-specific noise such as snapping shrimp found
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Figure 1-4: Illustration of possible sources of interference in the acoustic channel.
Many of these sources are difficult to model and predict, especially in an environment
where environmental properties may vary widely in time and space. Image Source:
http://www.rjeint.com/acousticTerms.htm

only in certain areas of the world often contain significant non-Gaussian components

([46],[6]). Thus, the Signal-to-Noise ratio (SNR) of the channel is a function of the

frequency and distance, and in particular, the available bandwidth decreases with

transmission over increased distances. This means dividing long distances into mul-

tiple hops allows for transmission at higher data rates over each link and for lower

total power consumption [46]. In recent years, development of advanced channel es-

timation and error correction schemes have gone a long way towards increasing the

robustness of the point-to-point acoustic channel (see [45], [16] for recent surveys).

Coherent phase-shift-keying (PSK) modulation schemes work well with sparse adap-

tive decision feedback equalizers (DFEs), and much work has been done on improving

the real-time performance and robustness of the channel estimator and equalizer. A

fundamental trade off exists between choosing to send more data in a larger packet,

where error correction schemes can be more sophisticated with less overhead but the

time taken to encode, transmit and decode the packet is longer and may incur more

channel interference and packet loss, and sending a smaller packet for a lower overall

data rate but more reliability in packet success. In general, acoustic modem param-

eters such as modulation type, error correction scheme, packet size and transmission

power may be tuned heuristically to improve performance.
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1.1.3 Formulation and Motivation

Many ocean applications are well-suited to the use of a team of vehicles collaborat-

ing and sharing information. Tracking and pursuit of dynamic ocean processes (e.g.

fronts and plumes), marine animals and vehicles is a time-critical application in which

multiple vehicles may contribute greater robustness, tracking precision and maneu-

verability (e.g. compared to long towed arrays). Oceanographic surveys require data

collection over large time and spatial scales, and multiple vehicles may be able to

resolve spatio-temporal ambiguity encountered by a single vehicle. As the availabil-

ity of vehicles increases and human/ship support costs become proportionally more

important, deploying additional vehicles in order to complete missions faster or mul-

tiple missions at the same time becomes increasingly cost efficient. The effectiveness

of a team of underwater vehicles hinges on the performance of the acoustic channel

for critical communications. In order to motivate the development of sophisticated

behaviors and decision-making for groups of vehicles, we address the goal of improv-

ing the performance of the acoustic channel in an unknown environment, specifically,

maximizing the cumulative data transmitted through the channel over the course of

a mission.

For most missions in an unknown ocean environment, measuring the water prop-

erties, bathymetry and other environmental variables for detailed modeling of the

acoustic channel is time-consuming and undesirable. Day-to-day fluctuations in sur-

face and sea conditions as well as the large spatial scale of ocean applications make

accurate modeling a challenge. In shallow-water and man-made environments, multi-

path interference results in significant variability in space, which may be exploited by

acoustic nodes if the variations in channel performance was known. A key insight lies

in recognizing that acoustic nodes can learn about the statistics of the channel (i.e.

SNR, packet success rate) at their current location while receiving and transmitting.

This is often exploited by static acoustic sensor networks with adaptive networking

algorithms. For the purpose of improving acoustic communications during a multi-

vehicle mission, we consider the case of deploying a mobile acoustic relay. The relay
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is free to travel to different locations and learn about the performance of the chan-

nel; i.e. the point-to-point physical channel in space. While the acoustic modems

may correct for errors and interference within the channel itself, a mobile relay is

able to adapt to link variations in physical space. Fig. 1-5 shows this setup in the

Charles River, Boston MA. The mobile relay’s goal is to maximize the cumulative

transmissions from the source to the destination node, given no prior knowledge of

the environment.

Figure 1-5: Illustration of adaptive relay positioning problem implemented in the
Charles River, Boston MA with an autonomous surface vehicle (right) towing an
underwater acoustic transducer as the mobile relay. A fixed source node is present at
the MIT Sailing Pavilion and a fixed destination node is another kayak station-keeping
across the river.

Thus, the relay must balance searching unknown sites to gain more information,

which may pay off in the future, or exploiting already-visited sites for immediate

reward. This is a classic exploration vs. exploitation problem that is well-described by

a multi-armed bandit optimization framework. We formulate the multi-armed bandit

for the problem of adaptive acoustic relay positioning and apply an elegant optimal

solution in the form of Gittins indices. However, for an autonomous ocean vehicle

traveling between distant waypoints, the time costs of traveling between locations

(switching costs) are significant. The multi-armed bandit with switching costs has

no optimal index policy, so we develop an adaptation of the Gittins index rule with

limited policy enumeration and asymptotic performance bounds.
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1.2 Prior Work

Though a conceptually simple problem, adaptive positioning in the spatial horizontal

field so as to improve the performance of the acoustic channel has not been sys-

tematically studied before. Depth adjustment was studied recently by Detweiler et

al. [18], following the discussion of Akyildiz et al. [3], with modems that were not

COTS units. Packet success rate in water less than 10m deep showed variability

by over a factor of two through the space, and with no clearly identifiable physical

structure. Schneider and Schmidt integrate three acoustic modeling techniques, the

Bellhop Ray Tracing model, OASES Wavenumber Integration Model and KRAKEN

Normal Modes model with real-time CTD data in order to optimally adjust the depth

of an AUV for maximum SNR [42]. Adaptive protocols for acoustic sensor networks

have been developed to optimize over packet loss and network performance (e.g. [12],

[26]), although efficient energy usage, routing and MAC protocols are more widely

studied. For a recent survey, see Akyildiz [2].

Autonomy behaviors and algorithms have been developed for mission-level control

and path-planning of multiple vehicle systems. Curcio et al. considered the use of

multiple SCOUT ASVs for autonomous oceanographic survey with wireless internet

links and present field experiments in Monterey Bay, CA and Dabob Bay, WA [17].

The vehicles collaborated to measure the sound speed in a section of water using

ranging pings and conductivity-temperature-depth (CTD) measurements. The path-

planning problem for adaptive sampling with single and multiple vehicles, in which the

goal is to maximize the accuracy of the estimates was formulated as a mixed integer

linear program (MILP) by Yilmaz et al. [53], in which the acoustic link was modeled as

a distance constraint between the AUVs and the support ship. Munafo et al. consider

a heuristic data-driven algorithm for the cooperation and coordination of a team of

AUVs in an environmental mapping mission [34], in which the overall goal is to achieve

a desired map accuracy. Each agent shares its information with the team, and the

cooperation algorithm trades off remaining in communication with maximizing the

local distance among the AUVs. The map estimation is based on radial basis functions
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(RBFs), following the approach of Alvarez et al. [4]. A large-scale field experiment

was reported by Leonard et al. [33] in which a fleet of six gliders was coordinated

over twenty four days. A path-planning algorithm was used to fuse real-time data

collected by the gliders with ocean model predictions in order to optimize sampling

patterns and minimize the uncertainty of field estimates. Most recently, the MORPH

(Marine robotic systems of self-organizing, logically linked physical nodes) project

[37] conducted field trials at Toulon IFREMER site demonstrating co-operative path

following and range-only formation control using teams of heterogeneous vehicles with

wifi and acoustic communications.

Shankar and Chitre formulated the multi-armed bandit for tuning configurable

parameters on acoustic modems, given only the bit error rate as estimated by a

Kalman filter [43]. In robotics, Stone and Kraus [47] considered the formation of an

ad-hoc team with varying ability and information (teacher and learner) as a bandit

problem maximizing the reward over the team of agents. The robot grasping task

has also been formulated as a multi-armed bandit by Kroemer et al. [29], in which a

high-level hierarchical controller learns about the performance of various grasps using

an Upper Confidence Bound (UCB) policy. The restless form of MAB with switching

costs has been applied to the problem of task allocation and routing for UAVs [31],

where a linear relaxation based on work by Bertsimas and Niño-Mora [9] computes

the multi-agent route. Similarly, the linear relaxation solution was applied to relay

selection optimizing over the physical layer in TCP wireless communications [49].

It has been shown that no optimal index policy solution exists for the MABSC

[7], and most research on this topic has focused on deriving general properties of the

optimal policy [5], deriving explicit optimal policies for special cases [19], and bound-

ing approximations to the optimal policy [1]. For a recent survey, see Jun [27]. The

problem has also been reformulated as a semi-Markov multi-armed restless bandit,

addressed by marginal productivity indices (MPI) [36] and a linear programming re-

laxation (LP) [32], based on work by Bertsimas and Niño-Mora [9]. These include

switching costs as a natural extension of the restless bandit [52], in which processes
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are non-stationary. However, both the MPI1 and LP treatments of the restless ban-

dit trade the advantage of an exact and general problem statement for a lookahead

horizon limited to one switch/step. This may not be enough for some applications.

The alternative — enumeration — incurs an exponential cost. Here, we exploit a

small state space that allows for a much deeper enumeration, but also seek methods

by which this load can be reduced. In particular, applying the key result of Asawa

and Teneketzis [5] allows us to adapt the Gittins index policy while greatly reducing

the computation cost of decision-making required.

1.3 Summary

The goal of this thesis is to address the problem of maximizing cumulative data

transmission through the acoustic channel by adaptively positioning an autonomous

and mobile acoustic relay. In Chapter 2, we formulate the multi-armed bandit opti-

mization problem and its specific application to adaptive relay positioning with the

inclusion of switching costs, and provide a solution in the form of an index-based

decision policy. In Chapter 3, we describe extensive field experiments conducted with

autonomous surface vehicles towing acoustic modems in the Charles River Basin,

Boston MA. The performance of the acoustic channel in this complex, shallow-water

environment is presented in Chapter 4, based on experimental data. In Chapter 5, we

evaluate the effectiveness of the multi-armed bandit decision policy, autonomously, in

comparison with competing algorithms and on synthetic data. This work has been

published in [15], [13] and submitted to [14].

1For a stationary process with switching costs, the MPI is equivalent to Asawa & Teneketzis’s
switching index [36]

27



28



Chapter 2

Problem Formulation

2.1 The Canonical Multi-Armed Bandit

The canonical Multi-Armed Bandit is an optimization framework for resource alloca-

tion problems in which the resource must be allocated sequentially between a number

of competing projects. The overall goal is to maximize the cumulative reward ob-

tained by the resource, however, each allocation must trade off prioritizing immediate

reward acquisition with taking action for potential future benefit (such as acquiring

information). The name arises from the following gambling analogy:

A gambler (the resource to be allocated) can play one slot machine (or “one-

armed bandit”) at a time. He has to choose between multiple slot machines (or one

slot machine with many arms, hence “multi-armed bandit”), and each arm returns a

reward once played. The multi-armed bandit may be deterministic, each arm return-

ing a reward from a fixed sequence, or stochastic, each arm returning a reward with

a fixed probability distribution. In general, each arm is characterized by a different

reward process, and the gambler begins with no knowledge of these processes. As the

gambler plays the bandit and observes each reward obtained, he is able to update

his information state, or his estimate of the reward distribution for each arm. Thus,

the gambler learns from his actions and builds a model of the multi-armed bandit,

using this model to improve future decisions. Each decision must balance improving

his model through exploration (playing arms with poorly characterized distributions
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Figure 2-1: Illustration of multi-armed bandit gambling analogy. The gambler makes
a series of sequential decisions between one-armed bandits (arms of the multi-armed
bandit) with unknown reward distributions. Estimates of the unknown distribu-
tions are built up by the gambler over multiple observations, and inform his future
decisions. Image Sources: http://thetechnologicalcitizen.com/, http://www.
thegadgetexperience.com/slot-machines/

to gain more information), or exploiting the model to gain the greatest immediate

reward (i.e. playing the arm with the current most favorable distribution). This

fundamental tradeoff arises in many real-life scenarios, and the multi-armed bandit

formulation can be widely applied to such problems as beam scheduling for array

tracking systems [28], radio channel allocation [23], and website ranking [41].

2.1.1 Problem Formulation

The multi-armed bandit is in general a discrete-time Partially Observed Markov De-

cision Process (POMDPs), or decision process on a Hidden Markov Model (HMM), in

which the underlying arm states are not directly observed and the observations (re-

ward) are a probabilistic function of the unobserved Markov process. The stochastic

one-armed bandit is defined as a sequence of process states x(1), · · · , x(n), where x(n)

is a random variable representing the state of the machine after it has been operated

n times. The reward R(x(n)) from the state is a real, non-negative random variable.
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The multi-armed bandit process is a collection of N independent one-armed bandit

machines, indexed by i. The state of the multi-arm process as a whole is denoted by

the vector x̄(t), containing {x1(t) · · · xN(t)}. We denote the number of times machine

i has been operated by ni, and its state by xi(t), where t is the current global decision

epoch:

t =
N
∑

i=1

ni. (2.1)

In general, the underlying state space of the multi-armed bandit is exponential

in the number of arms, rendering solving for the optimal solution computationally

intractable (exponential in memory and computation). However, the curse of dimen-

sionality can be addressed by assuming several key characteristics of the problem

structure:

1. Only one arm is played at each time step (decision epoch)

2. Only the arm that is played returns a reward

3. Idle arms are frozen — i.e. arms that are not played do not change state

4. Switching the arm to be played is instantaneous and costless

Thus, at each decision epoch, the decision process samples a single machine, up-

dating the state and reaping the associated reward, while the states of all other

machines remain frozen. The optimal solution to this canonical formulation is a dy-

namic allocation policy, denoted by π, that defines at each decision epoch the machine

for allocation it, such that the expected value of the total reward Vπ is maximized.

For the discount factor 0 < β < 1 and an infinite horizon, this reward is:

Vπ(x̄) = E

[

∞
∑

k=0

βkR(xik(k)) | x̄(0) = x̄

]

. (2.2)
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2.1.2 An Optimal Solution: Gittins Indices

Gittins and Jones [24] showed that the optimal policy is to play the machine with the

largest expected reward per unit time, maximized over all stopping times τ > 1:

it+1 = argmax
i

(νi(xi(t))), where
1

νi(xi(t)) = max
τ>1

E

[

τ−1
∑

k=0

βkR(xi(k)) | xi(0) = xi(t)

]

E

[

τ−1
∑

k=0

βk | xi(0) = xi(t)

] . (2.3)

Crucially, the index νi is a function only of xi(t), allowing the MAB to be decomposed

into N independent stopping time problems. Various algorithms to calculate the

Gittins index have been reported, recently by Sonin [44] and Niño-Mora [35].

2.2 A Heuristic Adaptation for Switching Costs

We define constant costs c(i, j) to reflect the undesirability of switching from machine

i to machine j; in the context of relay positioning, the cost is that of time spent in

transit. If tv(i, j) is the time taken to travel from i to j, and tr(i, j) is the time taken

to relay, we can set c(i, j) = ⌊tv(i, j)/tr(i, j)⌋— the number of transmissions the relay

could have made on location if it had chosen to sample instead of traveling. This is

only one of many cost models relevant to the application, and later we investigate

several of them. The optimal solution to the MABSC is one that maximizes:

Vπ(x̄) = E

{

∞
∑

k=0

βt
[

R(xik(k))− c(ik, ik−1)
]

| x̄(0) = x̄

}

(2.4)

where we define i−1 = i0. As noted previously, switching costs do not admit an index

policy [7] because the reward returned by a process no longer depends solely on the

number of times ni an arm has been operated. For this problem, we describe a solu-

tion of the priority-index policy form, where separate “continuation” and “decision”

1This standard notation directly shows the form of expected discounted reward over discounted
time, although in our formulation we assume β to be constant and independent of state.
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indices are used [36]. This scheme separates the decision process into two modes. At

every decision epoch, the continuation index is computed to decide if the current arm

is continued. If it is not, the decision index is then computed to decide which arm to

switch to. The continuation index νi is taken to be the Gittins index previously de-

fined. If the current arm has the highest Gittins index of the field, it can be continued

without further decision. However, even if it is not the current maximum, Asawa and

Teneketzis showed that it is optimal to continue playing an arm up to its stopping

time τ , only making a decision to switch when the stopping time is achieved (A&T

Thm. 2.1) [5]. This occurs when the Gittins index of the current arm falls below any

value it has previously reached, thereby defining the continuation rule:

if min
k<t

νik(xik(k)) ≤ νi(xi(t)), set it+1 = it. (2.5)

The continuation rule can only increase the number of times an arm is played.

When the stopping time is achieved, i.e., the above condition does not hold, the

decision index determines which arm to switch to. The continuation rule reduces

the required computation frequency of the decision index, admitting an accurate

and flexible but computationally intensive solution for a problem of this scope. We

calculate the decision index by maximizing an m-horizon look-ahead enumeration of

the expected reward rate over all possible policies π, where π is any possible sequence

of plays i1, ..., im ∀i ∈ 1, ..., N . We do not enumerate the action of remaining in the

current location, although policies include choosing to return to the current location

after switching away. The value of being in the final state x̂i is accounted for with an

updated Gittins index νi for that policy. Location-based switching costs are simple

to include in this formulation:

ηπ(x̄(t)) =
e(x̄(t))

E

[

m
∑

k=0

βk | x̄(0) = x̄(t)

] + νi(x̂it+m
(t+m)), (2.6)
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where

e(x̄(t)) = E

{ m
∑

k=0

βk
[

R(xik(k))− c(xik(k), xik+1
(k + 1))

]

| x̄(0) = x̄(t)

}

. (2.7)

The adapted decision rule for MABSC is then

it+1 = argmax
i1

(ηπ(x̄(t))). (2.8)

If m = 0, this rule is identical to the MAB Gittins index rule. If m = 1, this rule is

identical to the switching index defined by Asawa. Since enumeration is computation-

intensive, we apply A&T Thm. 2.1 to reduce the number of required decision index

computations. Thus, longer horizons can be enumerated, allowing the algorithm to

capture the benefits of efficient routing where a more myopic policy would not. An

algorithm for enumeration is presented in Appendix C.

2.3 Bernoulli and Normal Reward Processes for

Adaptive Relay Positioning

For learning and decision-making by the mobile acoustic relay within the MAB frame-

work, we discretize the physical space into N potential relay locations and define each

location as an independent arm of the bandit. In general, these relay locations may

be dictated by mission constraints. We note that although programmable modem

parameters such as packet encoding scheme can be included combinatorially as ad-

ditional machines, we have fixed these for simplicity. The agent plays an arm by

relaying through that location, updating its state information on the arm, and then

deciding which location to play next. Each two-hop transmission made by the relay

on location is naturally described by a Bernoulli trial defined as:

Xi =







1 if transmission success;

0 otherwise.
(2.9)
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Figure 2-2: Gittins indices computed for a Bernoulli reward process (N=750, β=0.95)

A computational method for calculating indices for a Bernoulli reward process is

described in Gittins [25]. Briefly, the infinite horizon is approximated with a large

finite horizon, and backwards induction is used to solve for indices. The state vector

in this case comprises simply ni, the number of plays on this location, and si, the

number of successes at this location: the index is thus νi(ni, si), which can be stored

as a lookup table. The indices are computed in real time by the relay and updated as

new information becomes available. Fig. 2-2 shows the Gittins indices computed for

the Bernoulli process, the index decreases logarithmically as a function of the total

observations as well as the number of failures such that unknown arms are prioritized

first, but the performance of each arm becomes increasingly important.

For the MAB autonomous experiment, we heuristically account for switching costs

by designating five transmissions as one observation, so that the time spent on location

is at least as long as the shortest transit time away. We define the reward θ̄i of each

machine as the estimated mean of the Bernoulli random variable Xi(t) for those five

transmissions. The estimate of the mean and variance of Xi(t) can be re-computed

with each new sample as a function of ni, following [39]:
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θ̄i(t) =











ni − 1

ni

θ̄i(t− 1) +
1

ni

Xi(t) if i was played

θ̄i(t− 1) otherwise.

(2.10)

σ̂2

i (t) =























ni − 2

ni − 1
σ̂i(t− 1) +

1

ni

(Xi(t)− θ̄i(t− 1))2

if i was played and ni ≥ 2

σ̂2

i (t− 1) if i was not played.

(2.11)

Thus, θ̄i is the best estimate of the probability of packet success at location i —

a practical measure of the acoustic channel’s performance that can be updated with

incoming samples. Its standard deviation σ̄i is given by:

σ̄2

i =
1

ni

σ̂2

i , (2.12)

which determines the weighted benefits of exploration as defined by the index calcu-

lation. By the Central Limit Theorem, assuming the Bernoulli trials are independent,

the reward distribution approximates a normal distribution as the number of obser-

vations gets large. Gittins [24] showed that the index for this reward process is a

function of the mean (expected reward) and its standard deviation (uncertainty of

estimate). This is expressed as:

ν(θ̄i, n, σ̄i) = θ̄i + σ̄iν(0, n, 1). (2.13)

ν(0, n, 1) are Gittins indices for the normal distribution with zero mean and unit

variance, and have been previously tabulated [25]. Indices are stored in a lookup table

and accessed in real time by the relay, which updates as new information becomes

available. Fig. 2-3 shows Gittins indices ν(0, n, 1), which decrease logarithmically

with the number of observations.
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Figure 2-3: Gittins indices for Normal reward distribution with zero mean and unit
variance.
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Chapter 3

Field Implementation and

Experiments

We consider a one-way, two-link acoustic transmission in the Charles River Basin,

Boston MA. A source modem located at the MIT Sailing Pavilion broadcasts a data

message, which is repeated by the relay; an acoustic modem towed by a robotic

surface vehicle. The destination node is a second robotic vehicle station-keeping

580m across the river from the source. A transmission is considered successful only

if both hops succeed, i.e., the relay decodes the source packet, and the destination

decodes the relay packet. Source transmissions may reach the destination directly;

this through-transmission success rate reflects the performance of the acoustic channel

with no relay. In setting up the adaptive positioning experiments, we assumed no prior

knowledge of the acoustic channel beyond the usual spreading law. Nine candidate

relay locations were chosen in a grid pattern centered on the line between the source

and destination nodes (Fig. 3-1). In practice, such a choice would be influenced by

mission constraints. For all experiments described, Site 1 was designated the starting

location.

We describe two types of experiments, “autonomy” trials and “hybrid” trials.

Autonomy trials were conducted with the Gittins index MAB algorithm and the

adapted MABSC algorithm implemented as fully autonomous, turn-key elements in

an autonomous multi-vehicle systems. Both acoustic acknowledgments, required by
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Figure 3-1: Charles River Basin (Boston, MA) with Autonomous Surface Vehicle
Nostromo inset. Relay locations are shown in white. Source and destination locations
are shown in red.

fully underwater systems, and WiFi acknowledgments (for simplicity) were imple-

mented. Hybrid trials were touring surveys that transmitted a set number of times at

each point in turn, for the purposes of building a large dataset from which datapoints

can be sampled offline.

3.1 Autonomous Surface Vehicles

All field experiments were conducted with custom-built autonomous surface vehicles

as the relay and destination nodes (Fig. 3-2). The source was a fixed station at the

MIT Sailing Pavilion with a modem at the dock. Our autonomous surface vehicles tow

acoustic modem transducers at a fixed depth to simulate underwater communications,

with the benefits of GPS and WiFi connectivity for controlled experiments. Here, we

describe the main components of the autonomous system, and further hardware and

software details are presented in Appendix A.
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Figure 3-2: Autonomous surface vehicle Nostromo (left) in Boston Harbor and with
Silvana (right) on the Charles River.

3.1.1 Vehicle Hardware

The vehicles, built on small whitewater kayaks, are 1.8m (5.9ft) in length and weigh

roughly 40kg (88lbs). A bow-mounted trolling motor provides 220N (55lbs) of thrust

for a maximum speed of 3m/s (6 kts), making the kayaks easy to control and highly

maneuverable. For the purposes of the experiments, the vehicles are commanded to

travel a constant 1.5m/s and maintain a station-keeping circle ten meters in diameter

on location. Two vehicles were used in field trials, as well as a fixed shore station

Icarus located at the MIT Sailing Pavilion.

3.1.2 MOOS-Based Software Architecture

MOOS (Mission Oriented Operating Suite) and MOOS-IvP software [8] are robotics

middleware packages developed by Paul Newman and Mike Benjamin to assist soft-

ware development on robotic platforms. MOOS provides a basic message-passing and

database service that allows multiple programs running on different platforms to share

information in an organized manner, while MOOS-IvP adds applications specifically

designed for the needs of marine vehicles. In particular, each vehicle maintains a per-

sonal communications database called the MOOSDB. A MOOS process (MOOSApp)

can publish data to this database, or subscribe for an update each time a variable is

published, using asynchronous thread-based operations. In this way, communication

between processes do not have to be handled individually.
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Figure 3-3: Illustration of MOOS and MOOS-IvP software architecture used for com-
munications and control.

MOOSIvP’s pHelmIvP is used as a “back-seat driver” on the vehicles, making

high-level autonomy decisions based on pre-determined behaviors and communicating

with low-level vehicle drivers. Multi-objective optimization is used to select a target

course, speed and depth (if applicable) if there are competing behaviors active. For

this application, we mainly implement the waypoint behavior and the station-keeping

behavior. For the waypoint behavior, an x,y co-ordinate is commanded and a trackline

is generated between its current and desired locations. In order to reduce crosstrack

error, MOOS-IvP’s trackline behavior then modulates the vehicle’s desired heading so

as to steer it towards a point on the trackline some lead distance ahead. The closer the

vehicle is to the trackline, the further the lead distance is along the trackline. Station-

keeping behavior turns off the vehicle’s motor when it is within some inner radius,

and allows the vehicle to drift beyond some outer slip radius before restarting the

thruster. For all field experiments considered, the inner radius was three meters and

the slip radius was ten meters. We implement open-source software library RTKLib

(Real-Time Kinematic Library) [48] in conjunction with a GPS base station at the

MIT Sailing Pavilion to achieve GPS noise covariance on the order of 10cm2.
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Onboard MOOSApps were implemented for the purpose of autonomy experiments.

Gittins indices were computed offline and stored in a look-up table provided to the

relay. Policy indices were computed on the shoreside computer with Matlab and

communicated to the vehicles for simplicity; the computation itself could be handled

in C++ with a slightly more powerful processor than the current single-core Gumstix

onboard.

3.1.3 Acoustic Modems

We use Woods Hole Oceanographic Institution (WHOI) Micro-modems [22], an es-

tablished and commercially available technology for underwater acoustic data trans-

mission (Fig. 3-4). The Micro-modem transmits at a fixed frequency (25kHz) and

power (50W burst for variable duration dependent on packet type). NMEA 0183 mes-

saging is used for commands and communication with the Micro-modem, and several

transmission rates characterized by different error correction codes and modulation

types are available.

Figure 3-4: Micro-modem Multi-Channel PSK Stack with Power Amplifier (left) and
25kHz Omnidirectional Transducer Towfish (right) Source: http://acomms.whoi.

edu/umodem/

For the purpose of field experiments, quadrature phase-shift-keying (QPSK) rates

1 and 2 were used mainly for the reasonable tradeoff between packet success rate

(in the range of 40% to 97%), packet data payload and time taken to transmit.

Higher rates are characterized by larger packet payloads and correspondingly longer
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transmission times and lower packet success rates (See Table B.2 in Appendix B).

We note that programmable modem parameters such as packet encoding scheme can

be included combinatorially as additional machines in the multi-armed bandit, but

we have fixed these for simplicity. The Micro-modem reports various transmission

statistics, and we present signal-to-noise ratios (SNR) from before the equalizer on

the receiving modem (“SNR-In”) as a representation of the physical channel quality.

Statistics of other available measures (e.g. SNR out of the equalizer) are presented in

Appendix A. A two-hop transmission as described above takes a minimum of fifteen

seconds with this hardware.

3.2 Autonomous MAB

For the MAB algorithm, a sample was designated as five transmissions so that the

time required to sample once was comparable to the time of transit to another lo-

cation. All data transmissions were sent at phase-shift keying (PSK) Rate 2, with a

fixed message size of 192 bytes. Estimates of the packet success mean and its vari-

ance were initialized with a touring survey consisting of two samples at each location.

This initialization was required as at least two observations are required to calculate

a Normal Gittins index. Subsequently, the relay executed the algorithm, selecting

the location with the highest index and breaking ties by favoring shorter travel dis-

tances. Two experimental trials were conducted on the same day. Acknowledgments

of transmission receipts were communicated from the destination to the relay over

WiFi for simplicity.

3.3 Autonomous MABSC

We employed the Bernoulli reward scheme with each sample consisting of a single

two-hop transmission sent at PSK Rate 1. The MABSC algorithm was initialized

with the assumption of 100% packet success probability at each site1. The look-

1Practically, the choice of initialization represents an acceptable performance threshold. Unex-
plored sites may never be chosen if a previous site maintains performance above or equal to the

44



ahead horizon for policy enumeration was constrained to a maximum computation

time of fifteen seconds. For a look-ahead horizon of five, the average computation

time is on the order of one second2. For an underwater vehicle, learning the result of

the relayed transmission (success or failure) from the destination robot must be done

with acoustic acknowledgments. To simulate this with our surface vehicles, we utilized

the Micro-Modem frequency-shift-keying (FSK) Mini-packet, a 13-bit message with

robust performance. Our experiments have consistently shown packet loss rates of

less than 5% for the FSK Mini-packet, thus it is substantially more reliable than

the PSK 192-byte packets used for data transmission. If the acknowledgment is

lost, the two-hop transmission is considered a failure by the relay. A touring survey

consisting of a single circuit with ten transmissions at each site was performed before

the experiment to provide a comparison measure, and the MABSC algorithm was run

for the same mission time (55 minutes). Subsequently, the relay robot executed the

MABSC algorithm autonomously.

3.4 Hybrid Dataset Touring Surveys

In the field it is difficult to compare the performance of several competing algorithms

as multiple relays would share the same physical space and channel, resulting in

transmissions experiencing acoustic interference or extended wait times. Conducting

experiments on different days is also undesirable as changing weather and surface

conditions make it difficult to objectively evaluate the improvement in performance

due to action by the algorithms. Thus, we construct a hybrid experiment; first, by

collecting a large dataset of transmissions on a single experimental day. A touring

survey taking five transmissions at every location was conducted for several hours.

Then, each decision algorithm was applied to the same dataset, i.e. transmission re-

sults were sampled from the dataset for the appropriate time and location and used to

update the algorithm’s information state. The shallow-water acoustic environment

threshold. Here we have prioritized exploration of all possible locations.
2Computed with Matlab R2012b on Windows 7 (64bit), Intel i5-3450, 16GB of RAM
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is in general difficult to model and using field data allows us to capture complex

spatially-dependent behavior. The hybrid dataset contained 835 detected transmis-

sions from source to relay and 636 detected transmissions from relay to destination,

with 493 of these being successfully decoded relayed transmissions.
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Chapter 4

Acoustic Communications in

Shallow Water

The transmission power of the Micro-modems is capable of transmitting many kilo-

meters in the open ocean, however, in a shallow-water man-made environment like the

Charles River, the performance of the channel is limited by multipath interference.

Fig. 4-1 shows altimetry data revealing irregular bottom topography in the area vis-

ited by the relay, especially a shallower shelf to the northeast. Though not visible, a

deeper channel is also present towards the south (Boston) bank where the destination

node is situated. Furthermore, there is a long stone wall about 10m behind the source

node and a hard seawall on the opposite bank. The depth of the water in the Charles

River basin is controlled by a series of locks at its mouth in Boston harbor. The

MAB formulation is set up to adaptively explore these space-varying properties of

the acoustic channel without sacrificing overall data transmission or requiring prior

knowledge of the channel characteristics.

Fig. 4-3 shows SNR-In values reported for all acoustic transmissions during the

MAB field experiment, Trial 2. The spread of values is -wide (25 to 25dB) and there is

no clear spatial structure to the distribution. The closest locations for each respective

link (Sites 1 and 5) do not have discernibly higher SNR-In values. Despite relatively

high SNR-In values, the complex, shallow-water environment makes packet decoding

difficult and introduces the spatial variation that the multi-armed bandit exploits.
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Figure 4-1: Altimetry data of the Charles River, Boston in the area visited by the
relay. Scale shown is from 0 to 10m. The depth of the Charles River varies from 2 to
12m, with the deepest area in a channel on the South (Boston) side of the river.

Figure 4-2: Impulse response of the matched filter showing various multipath arrivals
after the main signal. The mean squared error of the modem’s equalizer is another
measure of the interference in the channel (Appendix B).
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Figure 4-3: SNR-In for data transmissions from MAB field experiment, Trial 2. Di-
rection of transmission is shore to relay (left) and relay to destination (right).

The SNR of the initialization touring survey is shown in Fig. 4-4 for each link of

the two-hop transmission. The range shown is from 0 to 20dB, and high variability

in SNR values as well as the horizontal space is observable. When compared with

the final packet success rates (Fig. 4-5), it is not clear that the SNR, a traditional

measure of channel performance, is accurately correlated with the packet success rate

on location.

Figure 4-4: SNR-In for initial ten transmissions at each of nine relay locations. Range
is from 0 to 20dB.

Fig. 4-6 shows SNR-In values and final packet success rates from the hybrid ex-

periments (HybridSetA and B) of the nine relay waypoints conducted on different

days. For these surveys, the mobile relay transmitted five times at each location per

visit, at PSK Rate 2 with a fixed message size of 192 bytes, and acknowledgments of

transmission receipts were communicated over WiFi for simplicity and shorter cycle
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Figure 4-5: Final [packet success rates, variance of the estimate, number of samples]
at nine bandit locations and for both autonomy trials.

Figure 4-6: SNR-In for data transmissions from HybridSetA (left) and B (right).
Direction of transmission is source to relay. Site number is shown in black and final
packet success rates estimates over the whole mission is shown in red.
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times. There is significant spatial variation in final packet success rates by location.

HybridSetA showed a spread in means of 43%, with Site 8 outperforming the next

nearest by 7%. In comparison, HybridSetB shows a narrower spread of 18% and

Site 4 was the highest performing and Site 8 exhibiting poor performance. Varia-

tion from day to day motivates the need for a fast and adaptive learning algorithm

without the need for re-tuning heuristic parameters. The MAB and MABSC for-

mulations adaptively explore these space-varying properties of the acoustic channel

without sacrificing overall data transmission or requiring prior knowledge of channel

characteristics. The SNR-In values for the source-to-relay transmission link from each

dataset is presented in Fig. 4-7 (the same figures for the relay-to-end link is presented

in Appendix A). No clear trend can be distinguished either in time or space, and the

variation is approximately -20 to 20dB.

SNR-In values for the five transmissions taken each hybrid experiment were av-

eraged and Fig. 4-8 (left) shows the progression in each site for the time-averaged

values of SNR-In. There is no clear trend in these values temporally and thus we as-

sume the Bernoulli transmission processes to be acceptably stationary over the time

scale of the experiment. Remarkably, as illustrated in Fig. 4-8 (right), there is essen-

tially no correlation of SNR-In with the corresponding grouped packet success rates

of those transmissions, with high variation in SNR-In even for 100% success. These

statistics of the acoustic channel from our field experiments support the assumption

of stationarity for the multi-armed bandit, i.e., the channel characteristics do not

change meaningfully over the course of the mission and the Bernoulli processes can

be assumed stationary. The mean squared error (MSE) of the equalizer as well as the

SNR-Out of the equalizer are additional statistics given by the modem that measure

the interference of the channel and the performance of channel estimation and error

correction schemes. These statistics are presented in Appendix A.
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Figure 4-7: SNR-In values over time for HybridSetA (left) and B (right). Grey lines
represent lost packets. Sites are visited in the same order and data is for source-to-
relay transmission.
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Figure 4-8: HybridSetA Grouped SNR-In values over time (left), with overall average
noted at right, and Grouped Packet Success Rates against SNR-In (right). Data is for
source to relay transmission only. Each averaging group consists of five transmissions
on location.
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Chapter 5

Experimental Results

We evaluate each algorithm’s performance in achieving the overall goal of maximizing

the cumulative bytes of data successfully relayed. While all of the algorithms con-

sidered except for ǫ-greedy are asymptotically efficient and converge to the optimal

point given enough observations, the short-term performance of each algorithm is of

significant practical importance.

5.1 Autonomous MAB

As noted in Chapter 3, each sample corresponds to five transmissions that are Bernoulli

trials. For comparison with a method that does not take into account location-

dependent acoustic performance, we extrapolate the expected reward from the initial

touring survey and present the difference in reward obtained, in Figs. 5 and 6. Dur-

ing the exploration regime following the initialization period, MAB decision-making

performs similarly or worse than the touring approach as the vehicle continues to visit

locations with poor performance but higher standard deviations.

Fig. 5-1 presents the evolution by observation of the algorithm’s three key pa-

rameters for Trial 2: the Gittins index, the estimated mean, and the variance of the

estimate of each machine. The initial choice of exploration for Location 7 with low

mean but high variance is clear, as well as eventual settling into the high-performing

Location 3. As the number of observations increases, the Normal Gittins index falls
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Figure 5-1: Evolution of the Gittins Index, the mean, and the variance of the estimate
for Trial 2.

away exponentially, and the algorithm asymptotically favors one or several points

with comparatively higher performance. Evaluation of the algorithm’s performance

is considered in terms of cumulative bytes of data successfully transmitted via the

relay (Fig. 5-2). For comparison with a method that does not take into account

location-dependent acoustic performance, we extrapolate the expected reward from

the initial touring survey and present the difference in reward obtained, in Fig 5-3.

During the exploration regime following the initialization period, MAB decision-

making performs similarly or worse than the touring approach as the vehicle continues

to visit locations with poor performance but higher standard deviations. For Trial 1,

the cumulative data transmitted eventually exceeds that of the touring extrapolation

by 14% and the final data transmission rate is improved by 33%, while for Trial 2, the

cumulative data transmitted and the rate of transmission increased by 19.6% and 37%

respectively. In both trials, the MAB behavior was effective at improving cumulative

data transmission as compared to the initial survey. However, approximately 60% of

mission time was spent in transit, highlighting the significance of switching costs.
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Figure 5-2: Cumulative bytes transmitted for Trials 1 and 2 and extrapolations of
initial touring survey.

Figure 5-3: Improvement in cumulative bytes transmitted with respect to extrapola-
tions of initial touring survey.
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Figure 5-4: Cumulative data transmitted as a function of time in minutes for Trial 2,
with periods of vehicle transit shown in gray.

5.2 Autonomous MABSC

We compare the performance of the autonomous MABSC decision algorithm to the

touring survey conducted on the same day and consisting of ten transmissions at each

site over one circuit. The two algorithms were limited to the same mission duration.

Figs. 5-5 and 5-6 show the performance of the MABSC in comparison with the

tour. During the first thirty minutes of the mission, performance was similar as the

MABSC explored the unknown field. For the remainder of the mission, the MABSC

settled to a high-performing site, and achieved a final reward rate 77.2% higher, and

an average reward rate 28.4% higher than the touring survey. Since the MABSC is

able to discard poorly-performing locations while accounting for the cost of switching

locations, it was able to carry out more transmissions (Fig. 5-5).

We have shown that the MABSC decision policy efficiently maximizes data trans-

mission and outperforms a simple touring survey. Finally, we recall that the multi-

armed bandit formulation optimally trades-off exploration and exploitation, and we
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Figure 5-5: Cumulative packet success rate by observation, where unity indicates
100% success rate.
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Figure 5-6: Cumulative data transmitted by mission time.
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expect the MABSC to gain information about the field effectively. Thus, we assess

the performance of the touring survey and the MABSC policy in exploration. We

value an algorithm’s information gain by computing the total sum of squares error for

each algorithm summed over all relay sites. The squared error is taken between the

algorithm’s current estimate of the site’s performance, and the best possible estimate

obtained from both datasets. Fig. 5-7 shows the evolution of this error by observation

for the touring survey and the MABSC. It is clear the MABSC gathers information

about the performance field significantly faster than a simple touring survey, and does

so without sacrificing data transmission.
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Figure 5-7: Total sum of squares error by observation.

5.3 MABSC on the Hybrid Tour Data

We now compare throughput performance of the MAB, the switching cost adapta-

tion for MABSC, ǫ-greedy and ǫ-decreasing algorithms, and the touring survey. An

ǫ-greedy algorithm plays the best arm (1 − ǫ) of the time and switches to a ran-

dom arm ǫ of the time. ǫ-decreasing is a variation on ǫ-greedy where the value of
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ǫ decreases in time. Algorithms other than the MABSC have not been adapted to

account for switching costs, and there was no restriction on the number of switches

for any algorithm. ǫ-dependent algorithms were tuned with ǫ and τ of differing orders

of magnitude; only a high-performing subset is presented here for the sake of brevity.

Transmissions were sampled from the tour dataset in chronological order, terminat-

ing when unavailable data was requested. Since the number of transmissions at each

location is limited by the total mission time of the touring survey conducted in the

field, fewer observations are generated for greedier algorithms that sample at fewer

locations, i.e., perform less exploration. We evaluate each algorithm’s performance

in terms of the average packet success rate achieved, attained from the cumulative

number of successful transmissions.

Fig. 5-8 shows the performance of each algorithm as a function of observations

(transmissions). The estimated best-site and average success rates were computed

from each dataset as a whole.
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Figure 5-8: HybridSetA (left) and B (right) cumulative performance of MAB, MABSC
and tuned ǫ-greedy and ǫ-decreasing algorithms by observations, where unity indicates
100% success rate.

In HybridSetA, as before, the canonical MAB shows poorer relative performance

at least in the early stages, by first learning about all sites. In comparison, MABSC

actively avoids switching, and is closely competitive with tuned ǫ-greedy and ǫ-

decreasing algorithms. The overall trend was an increase in performance with the
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number of observations. On HybridSetB, the algorithms were similar in performance.

The touring survey initially performed worse than others, becoming very good around

100 observations, and deteriorating again towards the end. This behavior can be

attributed to high initial estimates of channel performance, with the exploitative

algorithms sampling more from high-performing locations and driving down their cu-

mulative performance at a quicker rate, while the touring survey continues to sample

all locations evenly. Although performance of the MABSC and ǫ-greedy methods are

comparable on a per-observation basis, the impact of switching times is substantial;

see Fig. 5-9, which accounts for transmission and transit times.
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Figure 5-9: HybridSetA (left) and B (right) cumulative transmissions by calculated
mission times. In left, the plot of ǫ = 0.010 overlaps with ǫ = 0.1, τ = 0.25.

In HybridSetA, with high performance on the best site, ǫ-greedy with the greatest

value of ǫ demonstrates a slow overall rate as expected, while decreasing values of ǫ

demonstrate higher rates. The direct MAB formulation is competitive in real time

and its performance is significantly improved by the adaptation to switching costs.

In HybridSetB, with narrow performance ranges, the algorithms which do not take

into account traveling time perform worse in the short-term than the touring survey

(constant five transmissions per site). All except for ǫ = 0.05 eventually settle on

the highest performing point. Noticeably, the MABSC algorithm terminates early,

around 75 minutes. It has very quickly settled on the highest-performing location

and taken all possible samples in that location from the dataset.
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The MABSC algorithm performed enumeration for 17% of decisions, made use

of Asawa’s theorem to continue without computation 37% of the time, and found,

with trivial computation, that the current point had the highest Gittins index 46%

of the time. At a computation horizon of size six, enumeration takes 1.95% of total

mission time, as compared to 7.8% without using the switching index and 11.3% if

enumerating at every decision point.
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Figure 5-10: HybridSetA and B Total Sum of Squared Differences over time, summed
over all sites.

As expected, the MAB improves the estimate at each site most efficiently, arriving

at an extremely good estimate in a low number of observations. In contrast, the ǫ-

greedy and ǫ-decreasing algorithms give very poor estimates of the whole field. The

MABSC provides a good compromise between information-gathering and maximizing

reward.

5.4 MABSC with Synthetic Data

Using synthetic data allows us to investigate the asymptotic performance of these

algorithms with different probability spreads, enumeration horizons and switching

cost models, however, the short-term behavior demonstrated in field experiments is

more relevant to practical applications in ocean systems. Packet success probabilities

were randomly assigned to the nine sites in two structures: a narrow range equally

spaced between 0.7 and 0.8, and a wide range equally spaced between 0.1 and 0.9.
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We average the results of 100 trials, each trial consisting of 450 observations for each

algorithm. Bernoulli data was generated to match site probabilities and randomly

permuted. Table 5.1 shows the average percentage improvement in reward rate (data

transmitted per unit time) over a touring survey, for the MAB and MABSC with

several lookahead horizons. The touring survey takes five samples at each location,

for a total of ten circuits. We use rate of reward for comparison as it factors in

the time cost of switching location. The MAB improves significantly over a simple

ǫ-greedy strategy or touring survey in both cases, and the MABSC provides further

gains although with apparently diminishing returns. The computation time required

for a single decision enumeration is reported where applicable1. These results with

longer enumeration horizons are very likely to be better than those which would be

provided by the one-step lookahead MPI or LP restless bandit solutions.

We also consider three modifications of the previously described switching cost

model based on travel time, and present results in Table 5.2. A constant model with

cost of one irrespective of location is used to investigate the effectiveness of location-

dependent switching costs. A normalized model, calculated by dividing the travel-

derived switching matrix by its mean, investigates the importance of scaling the cost

to the Bernoulli reward. In contrast, an inflated model has the switching matrix scaled

up ten-fold. Improvement was comparable across all cost models considered. These

results show that the MABSC performs consistently well with a range of switching

cost models and probability spreads.

1Computed with Matlab R2012b on Windows 7 (64bit), Intel i5-3450, 16GB of RAM
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Table 5.1: Computation Time by Lookahead Horizon and Field of Probabilities

Horizon Narrow Wide Time
Range Range (s)

ǫ-g 41.71 156.74 -
ǫ-d 54.14 174.96 -

MAB 60.97 183.95 -
1 63.46 183.82 1.3e-04
2 65.07 187.11 1.8e-03
3 65.97 190.13 1.7e-02
5 67.23 190.43 1.3e-00
7 67.34 190.40 1.0e+02

Table 5.2: Percentage Reward Rate Improvement Over Touring Survey

Switching Narrow Wide
Cost Range Range

Constant 64.78 188.80
Travel Time 65.97 190.13
Normalized 64.02 187.05
Inflated 68.35 188.37
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Chapter 6

Conclusion

We have shown that a multi-armed bandit formulation for adaptive acoustic relay

positioning can address the direct but poorly-known coupling of channel properties

to the relay’s physical location. In particular, the MAB algorithm optimally trades

off real-time exploration of the field with exploitation of high-performing sites, and

without any tuning parameters. We augmented the canonical MAB to include switch-

ing costs based on proven properties of the optimal solution, and demonstrated in the

field and using synthetic data that the MABSC scheme can achieve at least twice the

throughput of a roughly-tuned greedy method, and is never beaten. As well, the field

statistics are more quickly and accurately discovered by multi-armed bandit decisions;

the baseline MAB gathers global information most efficiently while the MABSC is

efficient at both information-gathering and maximizing cumulative reward.

We justify our assumption of stationarity over the course of the mission using

transmission statistics of the acoustic channel. However, we have observed significant

day-to-day spatial variation in our field experiments, most likely tied to changing

weather conditions. Longer missions and rapidly-changing weather conditions may

weaken this assumption. This variability may be properly addressed by a restless ban-

dit reformulation, though no optimal policy like Gittins indices has been developed.

The multi-armed bandit algorithm may also be re-initialized periodically, according

to the time scale of the mission. Further, the multi-armed bandit requires discretiza-

tion of the space in order to facilitate learning and decision-making. The selection
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of potential relay locations may be dependent on the mission specifications and the

spatial variability in the acoustic channel. This problem may be reformulated as an

arm-acquiring bandit, in which new arms are spawned in high-performing regions or

regions with high variability, to provide additional resolution of the field. Since the

computational cost of enumeration scales exponentially with the number of arms,

the relay must choose from a relatively small space of potential locations. As future

work, we plan to incorporate multiple relays in a three-hop transmission link, where

switching costs are dependent on the location and state of each relay.
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Appendix A

Figures
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Figure A-1: SNR-In values against mission time for HybridSetB Source-to-Relay (left)
and Relay-to-End (right). Grey lines represent lost packets. Sites are visited in the
same order.
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Figure A-2: Mean-squared-error (MSE) out of the Equalizer against mission time for
HybridSetA (left) and B (right). Grey lines represent lost packets. Sites are visited
in the same order and data is for source-to-relay transmission.
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Figure A-3: SNR-Out values against mission time for HybridSetA (left) and B (right).
Grey lines represent lost packets. Sites are visited in the same order and data is for
source-to-relay transmission.
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Figure A-4: Mean-squared-error (MSE) out of the Equalizer (left) and SNR-Out
values (right) for HybridSetB Relay-to-End transmission. Grey lines represent lost
packets. Sites are visited in the same order.
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Appendix B

Tables

Table B.1: Autonomous Kayaks Components and Dimensions

Component Part

Hull WaveSpot Fuse 35 Kids Whitewater Kayak
Thruster Minn-Kota Riptide 55 Trolling Motor
Motor Driver Roboteq LDC1450 Brushed DC Motor Controller
Servo ServoCity MS530-1 Mega Servo
Batteries Lithium Iron Phosphate (LiFePO4) 12.8V 60Ah and 100Ah
Compass Ocean Server OS5000
RF Comms Ubiquiti 2.4GHz Bullet M
Freewave Comms Freewave FGR2-PE 900 MHz
Radio Control Futaba 7 Channel 2.5GHz Controller

Web Reference: https://wikis.mit.edu/confluence/display/hovergroup/Home
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Table B.2: Micro-Modem Transmission Rates

Rate ECC Modulation Type Bytes per Frame Maximum Frames

0 Conv(2,1,9) FH-FSK 32 1
1* BCH (128:8) QPSK 64 3
2* DSSS-15 QPSK 64 3
3 DSS-7 QPSK 256 2
4 BCH(64:10) QPSK 256 2
5 Hamming(14:9) QPSK 256 8
6 DSS-15 QPSK 32 6

FH-FSK: Frequency-hopped frequency-shift-keyed

QPSK: Quadrature phase-shift-keyed.

*These rates were used in field experiments.

Source: http://acomms.whoi.edu/umodem/documentation.html
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Appendix C

Code

Definitions:

n number of arms

m horizon length

a number of successes

b number of failures

β discount factor

βi intermediate discount factor

βe expanded discount factor

C(i, j) switching cost matrix

c̄ switching cost submatrix (vector)

p̄ policy indices

p̄i intermediate indices

p̄e expanded indices

µ̄ packet success rates
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Algorithm 1 Policy Index Enumeration

Require: m > 1
for i = m to 2 increment by −1 do

for j = 0 to i do
βi ← βi + βj

end for

βe ← βm/βi

for k = n to nm increment by n do

βi ← βi + βj

if k/n mod n > 0 then

c̄← C(k/n mod n, :)
else

c̄← C(n, :)
end if

p̄e(k − (n− 1) : k)← p̄e(k − (n− 1) : k)− c̄T ∗ βe

p̄e(k − (n− 1) : k)← p̄e(k − (n− 1) : k) + µ̄i ∗ βe

if i = m then

for x = 1 to n do

p̄e(k − (n− 1) : k)← p̄e(k − (n− 1) : k)− µ̄i ∗GILookup(a+ i, b)
end for

end if

if m > 2 then

p̄i(k/n) = max p̄e(k − (n− 1) : k)
else

p̄(k/n) = p̄(k/n) + max p̄e(k − (n− 1) : k)
end if

end for

end for
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